|
The evolution of sexual reproduction describes how sexually reproducing animals, plants, fungi and protists evolved from a common ancestor that was a single celled eukaryotic species.〔 〕〔 〕〔 〕 There are a few species which have secondarily lost the ability to reproduce sexually, such as Bdelloidea and some parthenocarpic plants. The evolution of sex contains two related, yet distinct, themes: its ''origin'' and its ''maintenance''. The maintenance of sexual reproduction in a highly competitive world has long been one of the major mysteries of biology given that asexual reproduction can reproduce much more quickly as 50% of offspring are not males, unable to produce offspring themselves. However, research published in 2015 indicates that sexual selection can explain the persistence of sexual reproduction.〔(Population benefits of sexual selection explain the existence of males phys.org May 18, 2015 Report on a study by the University of East Anglia )〕 Since hypotheses for the origins of sex are difficult to test experimentally (outside of Evolutionary computation), most current work has focused on the maintenance of sexual reproduction. Sexual reproduction must offer significant fitness advantages to a species because despite the two-fold cost of sex, it dominates among multicellular forms of life, implying that the fitness of offspring produced outweighs the costs. Sexual reproduction derives from recombination, where parent genotypes are reorganized and shared with the offspring. This stands in contrast to single-parent asexual replication, where the offspring is identical to the parents. Recombination supplies two fault-tolerance mechanisms at the molecular level: ''recombinational DNA repair'' (promoted during meiosis because homologous chromosomes pair at that time) and ''complementation'' (also known as heterosis, hybrid vigor or masking of mutations). Sexual reproduction has probably contributed to the evolution of sexual dimorphism, where organisms within a species adopted different strategies of parental investment. Males adopt strategies with lower investment in individual gametes and may present a higher mutation rate, while females may invest more resources and serve to conserve better-adapted solutions. ==Historical perspective== Modern philosophical-scientific thinking on the problem can be traced back to Erasmus Darwin in the 18th century; it also features in Aristotle's writings. The thread was later picked up by August Weismann in 1889, who argued that the purpose of sex was to generate genetic variation, as is detailed in the majority of the explanations below. On the other hand, Charles Darwin concluded that the effects of hybrid vigor (complementation) "is amply sufficient to account for the ... genesis of the two sexes." This is consistent with the repair and complementation hypothesis, given below under "Other explanations." Several explanations have been suggested by biologists including W. D. Hamilton, Alexey Kondrashov, George C. Williams, Harris Bernstein, Carol Bernstein, Michael M. Cox, Frederic A. Hopf and Richard E. Michod to explain how sexual reproduction is maintained in a vast array of different living organisms. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「evolution of sexual reproduction」の詳細全文を読む スポンサード リンク
|